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 We discuss the signal-to-noise ratio of an intensity interferometry experiment for a highly 

asymmetric x-ray source using different aperture shapes in front of the photodetectors.  It is 

argued that, under ideal conditions using noiseless detectors and electronics, the use of slit-

shaped apertures, whose widths are smaller but whose lengths are much greater than the 

transverse coherence widths of the beam in the corresponding directions, provides no signal-to-

noise advantage over the use of pinhole apertures equal to or smaller than the coherence area.  

As with pinholes, the signal-to-noise ratio is determined solely by the count degeneracy 

parameter and the degree of coherence of the beam.  This contrasts with the signal-to-noise ratio 

enhancement achievable using slit-shaped apertures with an asymmetric source in a Young's 

experiment.   
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I. INTRODUCTION 

 The prospects for an x-ray Hanbury Brown and Twiss (HBT) intensity interferometry 

experiment using synchrotron sources have been considered for some time.[1-4]  The success of 

such an experiment hinges largely on the spectral brightness of the source, and thus calls for the 

use of high brightness x-ray sources, such as undulators.  An important characteristic of 

undulator sources is that they are much larger in the horizontal than in the vertical extent.[5]  

According to the Van Cittert-Zernike theorem,[6] the transverse coherence function of the beam 

emitted by a spatially incoherent source, at a plane of observation normal to the beam, is 

determined entirely by the intensity distribution of the source.  Undulator sources are essentially 

incoherent.  Consequently, the coherence width of an undulator beam is usually much greater in 

the vertical than in the horizontal direction.   

 In order to measure the vertical coherence profile of the x-ray beam produced by an 

undulator, we recently constructed a soft x-ray intensity interferometer and installed it on the 

X13A undulator beamline at the National Synchrotron Light Source (NSLS).[7-9]  To take 

advantage of the asymmetric beam profile, we proposed the use of slit-shaped apertures whose 

widths are smaller than the vertical coherence width of the beam, but whose lengths are equal to 

the horizontal beam size, which is much greater than the horizontal coherence width.  At the 

time, we concluded that a larger signal-to-noise ratio (SNR) can be achieved by using this 

geometry.[7]  We have since realized that, under ideal experimental conditions (for example, 

noiseless electronics), the use of slit-shaped apertures will not enhance the SNR over that which 

would pertain using pinholes.  In this report we present the arguments that lead to this new 

conclusion.  We will also contrast the independence of the SNR on the slit length for a HBT 

experiment with the SNR advantage of using slit apertures in a Young's experiment.   

II. SOURCE AND COUNT DEGENERACY PARAMETERS 

 Our intensity interferometer is an x-ray version of the original Hanbury Brown and Twiss 
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experiment with visible light,[10] in which the correlation of the intensity fluctuations at two 

spatially separated points (defined by two detector apertures) in a partially coherent beam are 

measured and used to determine the modulus of the complex degree of coherence between these 

two points.  The figure of merit for a HBT experiment is the source degeneracy parameter δ, 

which is the number of photons emitted by the source per spatially and temporally coherent 

mode. δ  depends on fundamental properties of the source and is given by 

 δ = B 3λ 4c ,  (1) 

where B is the spectral brightness of the source defined as the number of photons emitted per 

unit time, source area, solid angle, and bandwidth, λ is the wavelength, and c is the speed of 

light.[6]  For synchrotron x-ray sources, because of their pulsed time structure, one must 

distinguish the time-averaged brightness from the peak brightness, which is greater and is 

inversely proportional to the pulse duty-cycle.  The pulsed time structure and larger peak 

brightness may entail certain SNR advantages and disadvantages in a real x-ray HBT 

experiment.[11]  However, in order to simplify the discussion below, we assume that the x-ray 

source is continuous.   

 Of practical interest here is the count degeneracy parameter,[10] which accounts for the 

relative sizes of the detector apertures with respect to the beam coherence area.  In an earlier 

paper,[7] we proposed that when slit-shaped detector apertures accept the entire horizontal extent 

of an undulator beam but only accept a fraction of the coherent portion in the vertical direction, 

an effective count degeneracy parameter, 

 
δy = δ dxdx'

λ 2( )xΣ x'Σ
∫∫ ≅ δ xΣ x'Σ

λ 2( )
   = xM δ

,  (2) 

applies, where Σx and Σx' are the horizontal source size and angular divergence, respectively, and 

xM = xΣ x'Σ λ 2( ) is the number of horizontal spatial modes accepted by the slits.  In the 
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previous experiment we performed on the X13A beamline at NSLS, Mx was of the order of 102 

for the 32 Å x-rays produced by the undulator.[8]  The resulting δy was presumed to enhance the 

SNR for a given correlation integration time T, or conversely, to reduce the time required to 

achieve a predetermined SNR, because T is inversely proportional to y
2δ .[8]   

 However, Eqn (2) is incorrect because the count degeneracy can never exceed the source 

degeneracy if the phase space of the beam is to be conserved in the absence of dissipation.  

Instead, we consider the count degeneracy parameter of Goodman[12] 

  δc = K M , (3) 

where K  = IηΑτr is the average number of photon counts detected in an interval τr by a 

photodetector illuminated with irradiance I, with area A and quantum efficiency η, and M = 

MsMt is the number of spatial and temporal modes accepted by the photodetector in τr.  By 

comparison to the source degeneracy, δc is the number of photons that are detected per coherent 

mode.  If we restrict ourselves to the case of photon detection by primary photoelectric effect, η 

is always less than unity and δc is always less than or equal to δ.  For an experiment with an x-

ray beam of coherence area Ac > A, we have Ms = 1, and Mt = τr/τc, where τc = λ2/c∆λ is the 

coherence time of the beam.  Eqn. (3) gives 

 δc =
IηAτr

Mt
= ηδ

A
Ac

,  (4) 

with δ ≈ IAcτc being just the source degeneracy.[11]  The exact proportionality depends on the 

spatial and spectral shapes of the source and the coherence criteria used.  Eqn. (4) now accounts 

correctly for the relative sizes of the apertures with respect to the coherence area.  One can 

increase δc up to the limiting value of δ by increasing the area of the apertures.   

 For a highly asymmetric source, such as an undulator, Eqn. (4) must be modified 

accordingly.  The source asymmetry (the ratio of the horizontal to vertical extent is about 40 in 

our case) allows separation of variables such that the beam coherence function can be taken as  
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the product of two independent functions, each depending only on one of the two orthogonal 

coordinates x and y in the plane perpendicular to the beam.  For slit-shaped apertures of lengths 

Lx and Ly such that Ly < Lyc and Lx > Lxc, where Lxc and Lyc are the spatial coherence widths of 

the beam at the location of the apertures in the horizontal and vertical directions, respectively, 

we have Ms = MxMy = Lx/Lxc, with My = 1, and  

 δc =
IηLx Ly rτ

sM tM
= ηδ

Ly

Lyc
,  (5) 

which is independent of the horizontal slit length Lx and is always less than δ.   

 On account of Eqn (5), we argue that the SNR for a HBT experiment is independent of 

the horizontal lengths of the slits provided the slits are longer than the horizontal coherence 

width.  The signal, however, does increase linearly with the slit length.  Hence under practical 

conditions, the slit geometry could offer certain SNR advantages over the pinhole geometry 

because it could allow the signal to dominate over extrinsic noise from detectors and electronics 

in a real experiment.  For the sake of clarity, we first reiterate the SNR calculation by 

Goodman[12] for pinhole apertures, but with asymmetric sources.  We then discuss the case for 

slit apertures with asymmetric sources applicable to our x-ray HBT interferometer.   

III. SNR IN INTENSITY INTERFEROMETRY 

(i) Pinhole Apertures   

 Although the experiment mentioned above was performed in the so-called "current-

mode,"[8] we consider a "counting-mode" experiment for this discussion.  We emphasize that 

these two approaches should give equivalent results.  It is also assumed that the undulator source 

exhibits thermal-like statistics and that the radiation emitted is linearly polarized and cross-

spectrally pure.[12]  The intensity interferometer consists of two photodetectors and an electronic 
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correlator.  The acceptances of the photodetectors are defined by two pinholes apertures as 

shown schematically in Fig. 1(a), and it is assumed that the diameter of the pinholes is no larger 

than Lxc, the smaller of the two coherence widths of the beam in the observation plane.   

 In the "counting-mode," photons passing through the two apertures 1 and 2 are detected 

and counted independently.  The number of counts is recorded over a finite time interval τr, 

resulting in two signals K1 and K2.  We assume that τr >> τc.  The counting is repeated m times 

with m being a very large number.  Simultaneously, the two signals for each τr are multiplied by 

the electronic correlator, and their products are summed over a time T = mτr.  The output of the 

correlator, which measures the coincidences of K1 and K2, has been shown to be[11] 

 1K 2K
m
∑ = m 1K 2K 1+ cτ

rτ
2

12µ x( ) 12µ y( )⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ , (6) 

where 1K  and 2K  are the average counts per interval τr over m intervals, and 12µ x( ) and 

12µ y( )  are the complex degrees of coherence between points 1 and 2 in the x and y directions.  

The first term in Eqn. (6) corresponds to the random coincidence rate, whereas the second term 

measures correlation between the fluctuations 1∆K = 1K − 1K  and 2∆K = 2K − 2K  in the two 

signals and represents the true coincidence rate due to photon bunching or classical intensity 

fluctuations in a partially coherent beam produced by a thermal-like source.[13]  Assuming the 

fields at points 1 and 2 are horizontally coherent such that 12µ x( ) =1, the average correlation 

signal per counting interval τr, due to true coincidences, becomes,  

 1S =
1
m

∆ 1K ∆ 2K
m
∑ = 1K 2K 

2
12µ y( )

tM

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , (7) 

where Mt = τr/τc is just the number of temporally coherent modes included in each counting 

interval.  Note that S1 vanishes in the absence of spatial coherence, and also that a longer 

counting interval τr (i.e., a worse time resolution) tends to reduce the true coincidence rate as 

seen by the correlator.   
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 The noise in the correlation signal has two components, one arising from fluctuations in 

the true coincidence rate due to photon bunching and the other from those in the random 

coincidence rate due to the photon counting statistics (shot noise).  In our case in which the 

source degeneracy parameter δ << 1, the latter dominates the former.  Therefore ∆ 1K  and ∆ 2K  

can be treated as independent Poisson variates and their correlation neglected in evaluating the 

average noise N1 per counting interval, which becomes[12] 

 
1N = 2∆ 1K ∆ 2K( ) − 2∆ 1K ∆ 2K( )

    ≅ 2∆ 1K 2∆ 2K = 1K 2K .
 (8) 

It is important to note that N1 in Eqn. (5) is independent of the pinhole locations, which may be 

inside two different coherence areas of the beam.  For a much brighter source where the noise 

associated with the photon bunching dominates the shot noise, Eqn. (5) would no longer be 

valid, and the noise would also depend on the correlation between the interfering signals.  In the 

present case, the SNR for one counting interval is given by 

 1SNR =
K 

tM
2

12µ y( ) = cδ
2

12µ y( ) , (9) 

where K  is the average count per interval assuming 1K = 1K = K , and the count degeneracy 

parameter δc is defined in Eqn. (4).  Since τc << τr, the fluctuations in one counting interval can 

be considered to be uncorrelated from those in the next, and the SNR for m intervals is then 

proportional to the square root of m, i.e.,  

 mSNR = m
K 

tM
2

12µ y( ) = m cδ
2

12µ y( ) . (10) 

To increase the SNR, one can increase δc by enlarging the area of the pinholes up to the 

coherence area, but only at the expense of spatial resolution of the measurement.   
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(b) Slit-Shaped Apertures:   

 One way to increase the correlation signal is to increase 1K  and 2K  in Eqn. (7).  This 

can be done by increasing the aperture size using slit-shaped apertures whose longer dimensions 

are aligned along the x-axis, as depicted in Fig. 1(b).  We assume that the widths of the slits Ly1 

and Ly2 are smaller than Lyc, the coherence width of the beam in the y-direction, but the lengths 

of the slits Lx1 and Lx2 are much greater than Lxc, the coherence width in the x-direction.  For 

simplicity, we further assume that Ly1 = Ly2 = Ly , Lx1 = Lx2 = Lx, and Mx = Lx/Lxc >> 1.  We 

divide both slits into Mx imaginary subcells with each subcell (shaded area) traversing exactly 

one coherence width Lxc as depicted in Fig. 1(b).  Hence, there are Mx modes enclosed by the 

slits as opposed to one in the pinhole geometry.   

 Eqns. (6) through (10) must now be generalized for Lx > Lxc, i.e., when more than one 

spatial mode is accepted by the detectors.  We still consider m counting intervals τr for a total 

time of T.  The correlator signal per counting interval becomes: 

 

1S =
1
m 1∆K 2∆K

m
∑ = xM K ( ) xM K ( )

2
12µ y( )

xM tM

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

   = xM 2K 
2

12µ y( )
tM

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ ,

 (7') 

where K  is the average count arising from each subcell, xM K =
xL

K  is the average total count 

from one slit.  The appearance of Mx in the denominator of Eqn. (7') is due to the acceptance of 

more than one spatial mode by the detectors.  When Mx → 1 as in Fig. 1(a), Eqn. (7') is reduced 

to Eqn. (7) as expected.  From Eqn. (7'), we see that the inclusion of Mx modes increases the 

detector signals but also results in a loss of spatial resolution and tends to reduce the true 

coincidence rate resolved by the correlator in the same way as Mt.  Consequently, in comparison 

with Eqn. (7), the correlation signal increases only linearly with Mx or the slit length Lx.   
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 The intriguing question to ask here is whether the noise level remains the same as that for 

the pinhole geometry.  In our previous analysis,[8] the noise level was assumed to remain 

unchanged.  If we again consider only the pure shot noise and ignore the noise in the true 

coincidences, the average noise per counting interval will be 

 1N = xM K ( ) xM K ( ) = xM K , (8') 

increasing linearly with Mx or the slit length Lx.  Therefore the SNR per counting interval for the 

slit geometry is 

 1
slitSNR = xL

K 

xM tM
2

12µ y( ) = cδ
2

12µ y( ) , (9') 

where we have again made use of the count degeneracy of equations (3) to (5), but this time with 

δc = ηδ yL ycL  as defined in Eqn. (5) to account for the coherence widths and aperture sizes.  

As in Eqn. (10), the SNR of the slit geometry for m counting intervals is proportional to the 

square-root of m, i.e.,  

 m
slitSNR = m cδ

2
12µ y( ) .   (10') 

Clearly, the SNR is independent of the slit length Lx.  The count degeneracies using pinholes or 

slits are identical if the pinhole area is A = LxcLy and the coherence area of the beam is Ac = 

LxcLyc.  One can increase the SNR by increasing the width Ly of the slits but again at the expense 

of spatial resolution.   

 To help appreciate this conclusion, one can imagine the slit experiment as a combination 

of many simultaneous "pinhole" experiments.  As depicted in Fig. 2(a), there are now Mx 

separate pairs of mutually coherent subcells or "pinholes" across the slits, with each subcell 

occupying an equal area LxcLy.  The total correlation signal from the two slits is given by the 

incoherent sum of the individual correlation signals arising from all mutually coherent subcell  
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pairs.  From Eqn. (7), we have: 

 slitS = 1S + 2S +. ..+ iS +... + xMS = xM 2K 
2

12µ y( )
tM

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ , (11) 

where iS = ∆ 1iK ∆ 2iK  is the correlation signal due to the signal K1i from the ith subcell in the 

upper slit and the signal K2i from the ith subcell in the lower slit, and we assume that 

1iK = 2iK = K .  The correlation signal produced by the two subcell signals K1i and K2j, for i ≠ j 

such that these two subcells do not reside within a single coherence area, is identically zero 

because of the lack of correlation between their fluctuations.   

 The noise in the correlation signal is calculated differently.  The noise in the random 

coincidence rate due to K1i and K2j is nonzero for i ≠ j, and is independent of the subcell 

locations in the slits, i.e., 

 ijN = 1iK 2 jK = K ,  (12) 

as in Eqn. (8).  Because the noise arising from each individual pair of subcells is statistically 

uncorrelated to that from another, the total noise-squared is the sum of the noise-squared of all 

possible subcell combinations as illustrated in Fig. 2(b).  The total noise-squared of the slit 

geometry thus becomes 

 slit
2N = 2

ijN
j

xM
∑

i

xM
∑ = x

2M 2K , (13) 

consistent with Eqn. (8').  By Eqns. (11) and (13), the SNR of the slit geometry for one counting 

interval is again independent of the mode number Mx.  The effect of the source and aperture 

shapes on the SNR has already been discussed by Hanbury Brown and Twiss,[14] although they 

made no specific reference to a highly asymmetric source as in the present case.   
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IV. SNR IN YOUNG'S EXPERIMENTS 

 The essential difference between a Young's double-slit experiment and a HBT 

experiment is how the input signals are processed.  The two interfering signals, i.e., the electric 

field amplitudes in the case of a Young's experiment, are combined before detection; whereas in 

the case of a HBT experiment, the signals (field intensities) are first detected and then combined 

electronically.  Let us first consider the pinhole geometry shown in Fig. 1(a) with 

quasimonochromatic illumination.  The average number of photocounts measured in an interval 

τr at a point P in a plane of observation located at some distance behind the pinholes, is given by 

 
K P( )= 1K + 2K + 2 1K 2K 12µ y( ) cos k∆L( )

        = 1K + 2K ( )1 + V cos k∆L( )( ) ,
 (14) 

where 1K  and 2K  are the average counts that would be measured at P when one or the other 

pinhole is illuminated, V = 2 1K 2K 12µ 1K + 2K ( ) is the visibility of the fringes that are 

observed, ∆L is the path difference between x-rays passing through the upper and lower pinholes 

that reach P, and k = 2π/λ.   

 For simplicity we assume that 1K = 2K = K .  The mean signal in the Young's experiment 

is identified with the amplitude of the interference term 2 12µ K , whereas the rms noise arises 

from the background term 2K .  Because K  is a Poisson variate, the noise due to K  is just K  

and the SNR is 

 SNR =
2 12µ K 

2K 
= 12µ cδ rτ

cτ
,  (15) 

where cδ = K tM  as before.  In comparison with Eqn. (9), we see that the SNRs of the Young's 

and HBT experiments are distinguished by their dependence on the count degeneracy.  It is also 

apparent that the SNR is proportional to K  in the Young's case as opposed to K  in the HBT 

experiment.   
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 Based on Eqn. (15), a greater SNR can be obtained by increasing the field intensity at P, 

such as using the slit geometry as we consider now.  The lengths of the slits L1 and L2 are 

assumed to be much greater than the horizontal coherence width Lxc of the beam.  Both slits are 

divided into Mx imaginary subcells with each subcell traversing exactly one coherence width Lxc, 

as depicted in Fig. 1(b), where Mx = Lx/Lxc > 1 and Lx = L1 = L2 as previously assumed.  The 

number of counts measured at P becomes 

 K P( )= 2 xM K 1 + 12µ cos k∆L( )( )
,
 (14') 

where K  is the average count per interval τr produced by one coherent subcell either in the 

upper or lower slit, and xM K  is the average total count per interval τr from one slit.  Following 

similar arguments in deriving Eqn. (15), the SNR for the slit geometry is 

 SNR =
2 12µ xM K 

2 xM K 
= 12µ xM cδ rτ

cτ
, (15') 

which depends on the length of the slits or the number of horizontally coherent modes.  This is 

not surprising because the Young's signal for the slit geometry can be considered as the 

incoherent sum of the signals arising from Mx pairs of mutually coherent subcells or "pinholes", 

whereas the total noise is that of 2Mx independent Poisson variates, which depends on the 

square-root of Mx.  It is therefore beneficial to use slits instead of pinholes when performing a 

Young's experiment.   

V. DISCUSSION 

 For a longer counting time T = mτr, we find, from equations (15) and (15'), that the SNR 

∝ m , which is identical to the time dependence of the HBT experiment.  But, because the 

summation is done after the signal processing in the Young's experiment, the SNR is larger when 

using slits than that due to the pre-processing averaging of the signal in a HBT experiment.   
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 The reason for the independence of the SNR on the slit length in the HBT experiment is 

that the contribution to the signal from each "pinhole" pair is not independently processed.  

Consequently, the correlator sees the total noise in addition to signal from all "pinhole" pairs at 

once.  The advantage of having a stronger signal is canceled out by the disadvantage of including 

more shot noise.  The noise is greater due to contributions from all "pinhole" pairs, including 

those that are mutually coherent as well as incoherent.  In contrast, the noise in Young's 

experiment is less because there is no contribution from mutually incoherent "pinhole" pairs.   

 However, there is a way to enhance the SNR of a HBT experiment using one-

dimensional array detectors whose one spatial dimension is greater than the coherence width in 

the corresponding direction.  Consider the scheme shown in Fig. 3, which is similar to that 

considered by Howells.[2]  For simplicity, we assume that the size of each detection element of 

the detector matches the coherence width Lxc and that there are Mx of these elements in each 

detector.  The detection electronics are configured such that the signals arising from each pair of 

elements located within a single coherence area are correlated independently and then averaged, 

after correlating them.  Compared to equations (10) and (10'), the SNR is enhanced by the 

square-root of the number of horizontal modes Mx, i.e., 

 mSNR = xM m cδ
2

12µ y( ) .   (16) 

Correspondingly, the reduction of the measurement time can be substantial if Mx is large.  

However, the above scheme may be difficult to implement experimentally because Mx sets of 

amplification electronics and correlators would be needed.   

 The above analysis may be generalized to measurements involving a higher-order 

coherence function of degree n.  In general, we expect the signal-to-noise ratio of the geometry 

in Fig. 1(b) to vary as x
1−n 4M , where Mx is the number of horizontal modes accepted by the slits.  

We see that the signal in the slit geometry is always proportional to the length of the slits; 



 
14

whereas the noise varies as x
n 4M .  For example, in an experiment designed to be sensitive to the 

sixth-order degree of coherence, use of the slit configuration in Fig. 1(b) will reduce the SNR 

that one would achieve using the pinhole configuration in Fig. 1(a).  In this case, the SNR for the 

slit geometry would vary as 1 xM .   

 Finally, we reestimate the minimum time Tmin required to achieve a predetermined SNR 

for a HBT experiment with a synchrotron source using either the pinhole or slits geometry.  For 

simplicity, we assume the source is continuous.  By Eqn. (10'),  

 minT =
2SNR( )

DQE
rτ

2
bη δ yf( ) 4

12µ y( )
, (17) 

where DQE is the detective quantum efficiency of the detector, ηb is the beamline efficiency, 

and fy = Ly/Lyc is the coherent fraction accepted by the detector apertures.  The time-averaged 

spectral brightness of the X13A undulator is approximately 1.0x1017 

photons/(s•mm2•mrad2•0.1%BW) at a wavelength of 3.2 nm, amounting to a source degeneracy 

δ of 2.7x10-3.  If one were to measure values of 12µ y( )  as small as 0.2 with a SNR of 3, using 

ηb = 10%, τr = 3 ns, fy = 10%, and DQE of 10%, the required time is Tmin = 2.3x105 sec or 64 

hours, which is  impractical for a synchrotron x-ray experiment.  However, it may be feasible to 

try x-ray HBT experiments with brighter sources, such as those at the Advanced Light Source or 

the Advanced Photon Source.[11]   
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P. K. Wong, K. J. Randall, W. Yun, and E. Johnson.  This work is supported by the U. S. 
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FIGURE CAPTIONS: 

Fig. 1.  (a). The pinhole geometry for either the HBT or the Young's experiment, where two 

apertures of area A are completely encompassed by a single coherence area Ac =LxcLyc.  (b) The 

slit geometry, where two apertures of area A  = LxLy cover Mx = Lx/Lxc horizontally coherent 

modes, but less than one vertically coherent mode.  Each slit can be divided into Mx imaginary 

coherent subcells, with each subcell (shaded area) extending over just one horizontal coherence 

width Lxc.   

Fig. 2.  Calculation of the correlation signal and noise in a HBT experiment using the slit 

geometry.  (a) The total correlation signal is the incoherent sum of the individual correlation 

signals arising from Mx pairs of mutually coherent subcells as indicated by the double-arrowhead 

lines.  (b) The total noise-squared is the sum of the individual noise-squared of x
2M  possible 

combinations of subcells, regardless of whether they are located inside or outside of a single 

coherence area.  One such possible combination is between the ith subcell in the upper slit and 

the jth subcell in the lower slit.   

Fig. 3.  An improved HBT experimental configuration using one-dimensional detectors.   The 

size of each detector element matches the coherence width Lxc.  The signals from Mx pairs of 

elements are correlated independently and then averaged.   
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